Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Although the “eye-mind link” hypothesis posits that eye movements provide a direct window into cognitive processing, linking eye movements to specific cognitions in real-world settings remains challenging. This challenge may arise because gaze metrics such as fixation duration, pupil size, and saccade amplitude are often aggregated across timelines that include heterogeneous events. To address this, we tested whether aggregating gaze parameters across participant-defined events could support the hypothesis that increased focal processing, indicated by greater gaze duration and pupil diameter, and decreased scene exploration, indicated by smaller saccade amplitude, would predict effective task performance. Using head-mounted eye trackers, nursing students engaged in simulation learning and later segmented their simulation footage into meaningful events, categorizing their behaviors, task outcomes, and cognitive states at the event level. Increased fixation duration and pupil diameter predicted higher student-rated teamwork quality, while increased pupil diameter predicted judgments of effective communication. Additionally, increased saccade amplitude positively predicted students’ perceived self-efficacy. These relationships did not vary across event types, and gaze parameters did not differ significantly between the beginning, middle, and end of events. However, there was a significant increase in fixation duration during the first five seconds of an event compared to the last five seconds of the previous event, suggesting an initial encoding phase at an event boundary. In conclusion, event-level gaze parameters serve as valid indicators of focal processing and scene exploration in natural learning environments, generalizing across event types.more » « less
-
Embodied learning represents a natural and immersive approach to education, where the physical engagement of learners plays a critical role in how they perceive and internalize concepts. This allows students to actively embody and explore knowledge through interaction with their environment, significantly enhancing retention and understanding of complex subjects. However, researchers face significant challenges in exploring children's learning in these physically interactive spaces, particularly due to the complexity of tracking multiple students' movements and dynamic interactions in real-time. To address these challenges, this paper introduces a Double Diamond design thinking process for developing an AI-enhanced timeline aimed at assisting researchers in visualizing and analyzing interactions within embodied learning environments. We outline key considerations, challenges, and lessons learned in this user-centered design process. Our goal is to create a timeline that employs state-of-the-art AI techniques to help researchers interpret complex datasets, such as children's movements, gaze directions, and affective states during learning activities, thereby simplifying their tasks and augmenting the process of interaction analysis.more » « lessFree, publicly-accessible full text available November 25, 2025
-
Free, publicly-accessible full text available November 4, 2025
An official website of the United States government
